Waiting for water: Myanmar villages left behind

By Esther Htusan

DALA, Myanmar (AP) — Every afternoon, the long lines start to form, hundreds of men, women and children waiting to dip their plastic buckets into the lotus-filled reservoir just outside Myanmar’s biggest city, Yangon. It’s their only source of clean drinking water, they say, and during the dry season, April and May, there is only so much to go around.

“It wasn’t always this way,” says 72-year-old Tin Shwe, one of the village elders, as he looks at the queue, some boys as young as 8 waiting their turn, yokes at their side. “It used to be only paddy fields. Only a few houses. There was enough water for all of us.”

Myanmar only recently emerged from a half-century of military rule. Nascent democratic reforms implemented by the new civilian government since 2011 have resulted in a development boom, with the World Bank and others pouring billions of dollars into the country of 60 million as it starts to open up to the world. But so far, it is the big cities that are seeing the benefits.

Even places like Dala township — just a 20-minute boat ride from Yangon — have so far been left out. Authorities tell residents that maybe next year the government will start installing pipes so that water can be delivered straight to their homes.

The water shortages began with a population boom in the 1980s, with the number of inhabitants jumping from a few dozen to more than a thousand in part because they wanted to be close to the big city.

With no restrictions on how much water each family could take, the natural, fresh-water pond started running low. Eventually, just a decade ago, it dried up entirely. With no offers of help from the government, men like Tin Shwe decided to step in, devising a rationing system as water started seeping back so that residents could rely on it year-round.

Villagers have only one hour — between 4 p.m. to 5 p.m. — to get their water during dry season to limit its use. They are charged a tiny sum — 10 kyat for each bucket, or 10 U.S. cents. With so many takers it’s enough money for small upkeeps, like fixing the fence that surrounds the reservoir or stringing up electricity for lights.

People walk for up to five kilometers (three miles) with their empty buckets. They are allowed to fill up two each. If they need more, they can get back in line. When they are ready they begin the long, hard trek home.

“I usually get three buckets,” said 19-year-old Aye Thu Zar as she neared the front of the line. “There are seven in my family, so that’s enough for drinking and cooking. But the walk home hurts my shoulders. My legs, too. I can barely sleep at night the pain is so bad.”

She and others hope the new Myanmar will eventually reach Dala.

But for now, says Ko Ko, one of the villagers waiting his turn, “we are like water shortage refugees.”

Source: Seattle Pi.

Pure Water Gazette Fair Use Statement

Drink Water Early in the Morning 

Editor’s Note: There are bushels of articles telling you how much water to drink and what kind of water to drink, but not a lot like the one below that tells you when to drink.  In fact, according to the unnamed source of the article, early morning water drinking can cure most human ailments.  FYI: We don’t believe a word of it. 

It is accustomed in Japan to drink water after waking up early in the morning. Furthermore, scientific tests have proven its value. For many illnesses the water treatment had been found successful by a Japanese medical society as a 100% cure for the following diseases:

Headache, body ache, heart system, arthritis, fast heart beat, epilepsy, excess fatness, bronchitis asthma, TB , meningitis, kidney and urine diseases, vomiting, gastritis, diarrhea, piles, diabetes, constipation, all eye diseases, womb, cancer and menstrual disorders, ear nose and throat diseases.

METHOD OF TREATMENT

1. As you wake up in the morning before brushing teeth, drink 4 x 160 ml glasses of water

2. Brush and clean the mouth but do not eat or drink anything for 45 minute

3. After 45 minutes you may eat and drink as normal.

4. After 15 minutes of breakfast, lunch and dinner do not eat or drink anything for 2 hours

5. Those who are old or sick and are unable to drink 4 glasses of water at the beginning may commence by taking little water and gradually increase it to 4 glasses per day.

6. The above method of treatment will cure diseases of the sick and others can enjoy a healthy life.

The following list gives the number of days of treatment required to cure/control/reduce main diseases:

1. High Blood Pressure (30 days)

2. Gastric (10 days)

3. Diabetes (30 days)

4. Constipation (10 days)

5. Cancer (180 days)

6. TB (90 days)

7. Arthritis patients should follow the above treatment only for 3 days in the 1st week, and from 2nd week onwards – daily.

This treatment method has no side effects, however at the commencement of treatment you may have to urinate a few times. It is better if we continue this and make this procedure as a routine work in our life.

The Chinese and Japanese drink hot tea with their meals not cold water. Maybe it is time we adopt their drinking habit while eating!!!

For those who like to drink cold water, this article is applicable to you. It is nice to have a cup of cold drink after a meal. However, the cold water will solidify the oily stuff that you have just consumed. It will slow down the digestion.

Once this ‘sludge’ reacts with the acid, it will break down and be absorbed by the intestine faster than the solid food. It will line the intestine. Very soon, this will turn into fats and lead to cancer. It is best to drink hot soup or warm water after a meal.

Source:  News.Am

Over the years, the Gazette has published several dozen articles on the topic of water and health.  See them here.

 

Pure Water Gazette Fair Use Statement

Do coffee and tea really dehydrate us?

by Claudia Hammond

 Gazette’s Introductory Note:  Without a research grant or even giving the matter more than a couple of minutes thought I dismissed a long time ago the idea that the water that’s in coffee and tea somehow doesn’t “count” toward the body’s requirement for water.  If the human body can extract micro nutrients from foods why in heaven’s name would it not be able to find and use water that is mixed with a bit of tannins and caffeine?  Obviously, the water that’s in fresh fruit or a bowl of oatmeal is water that’s available for use by the body.  And as for coffee’s apparent diuretic properties, my view is that it’s mainly the water in the beverage that makes you pee a lot, not something special about the tea or coffee.  The research presented in the article below would seem to bear me out.–Hardly Waite.

Every day people around the globe drink 1.6 billion cups of coffee and around twice as many cups of tea.

They enjoy the taste and the fact that the caffeine wakes them up. But when we’re exhorted to drink six or eight glasses of water a day (a disputed figure that I’ve discussed previously), it’s usually emphasised that drinks like coffee and tea don’t count towards your daily liquid total because they’re dehydrating. Or so we’re told. What’s the evidence?

Although tea and coffee contain many different substances the one on which most research focuses is caffeine. Even then there is so little research on the topic, that one of the most frequently mentioned studies was conducted way back in 1928 with a sample of just three people. The three men were studied over the course of two winters. Sometimes they were required to drink four cups of coffee a day; sometimes they drank mainly tea and at other times they abstained or drank water laced with pure caffeine. Meanwhile the volume of their urine was measured regularly. The authors concluded that if the men consumed caffeine-laced water after a two month period of abstinence from both coffee and tea, the volume of their urine increased by 50%, but when they drank coffee regularly again they became inured to its diuretic effects.

Very large doses of caffeine are known to increase the blood flow to the kidneys and to inhibit the absorption of sodium which explains why it could act as a diuretic, dealing with the sodium which hasn’t been absorbed. But the exact mechanism is still a matter of debate.

But when you look at the studies of more realistic quantities of caffeine, the diuretic effect is not nearly so clear. A review of 10 studies by Lawrence Armstrong from the University of Connecticut concluded thatcaffeine is a mild diuretic at most, with 12 out of 15 comparisons showing that people urinated the same amount, regardless of whether the water they drank contained added caffeine or not.

So why do so many people think they need the loo more often when they’ve been drinking tea or coffee? As the review indicates, most studies give people pure caffeine added to water, rather than cups of actual tea or coffee as you might drink at home. Is there something about the combination of substances contained in coffee and tea that make the difference?

In a rare study where people drank nothing but tea for the 12 hour duration of the trial, there was no difference in hydration levels between them and the people who drank the same quantity of boiled water. When it comes to the consumption of coffee, one study did find a 41% increase in urine, along with a rise in the excretion of sodium and potassium. But these participants had abstained from caffeine before the study, so this doesn’t tell us what would happen in people who are accustomed to drinking coffee.

A second study found no difference in hydration between those drinking water or coffee, leaving us with conflicting findings. Then came new research earlier this year from Sophie Killer at Birmingham University in the UK, who not only measured the volume of urine, but tested their blood for signs of kidney function as well as calculating the total amount of water in the body. The men in the study drank four cups of coffee a day, far more than the average coffee-drinker. Yet there was no evidence they were any more dehydrated than those who drank water alone. This research was funded by the Institute for Scientific Information on Coffee, whose members are coffee companies, but it has been published in a peer-reviewed journal and the authors confirm that the Institute played no role in gathering or analysing the data or writing up the research.

So although we might notice needing the loo more when we’ve been drinking coffee, the mistake is basing our observations on a comparison with the time we’ve drunk nothing, not with a similar amount of water. If you chose a glass of water instead of a cup of tea, you’d probably see the same effect.

Source:  BBC.

Pure Water Gazette Fair Use Statement

Sebago water receives ultraviolet treatment 

by Ezra Silk

In response to Environmental Protection Agency regulations, the Portland  [OR] Water District is treating the water that it supplies to the Greater Portland area for cryptosporidium, a microscopic parasite that typically derives from animal waste and can cause severe gastrointestinal illness.

Beating a federally imposed deadline of April 1, the district has been operating two 14-foot, 84-lamp ultraviolet units for the past several months. The devices sterilize any cryptosporidium pathogens that may pass through, according to Joel Anderson, the chief operator of the Sebago Lake Water Treatment Facility.

“When UV attacks (pathogen) DNA, it actually breaks those cells and short-circuits them, and then renders them incapable of replicating,” said Anderson. “One cell in your system is not going to make you sick. When it gets into your system and begins to multiply is when you run into problems.”

According to Anderson, the district completed two years of monthly testing and never detected any cryptosporidium organisms in the water.

Joel Anderson, chief operator of the Sebago Lake Water Treatment Facility, said that one of the benefits of a new UV treatment system is that it does not add any new chemicals to the water supply. The average 21.5 million gallons of water that travel through the water treatment facility every day are treated with zinc orthophosphate, sodium hydroxide, sodium hypochlorite, aqua ammonia and hydroflourosilicic acid. 

“The good news is Portland Water District is of very low susceptibility to it,” Anderson said. “We don’t have a lot of farmland in our watershed. We have a natural filtration system that takes place at Sebago Lake.”

In 1993, a cryptosporidium outbreak in Milwaukee’s drinking water supply system made 400,000 people ill, and killed more than 100 people. In response, the Environmental Protection Agency began to draft the Long Term 2 Enhanced Surface Water Treatment Rule, which was adopted in 2006. The rule requires public water systems that use surface water to treat for cryptosporidium.

The average 21.5 million gallons of water that travel through the water treatment facility every day are treated with zinc orthophosphate, sodium hydroxide, sodium hypochlorite, aqua ammonia and hydroflourosilicic acid. Anderson said that one of the benefits of the UV treatment is that it does not add any other chemicals to the water supply.

“One of the reasons the Portland Water District chose to go with UV as opposed to a chemical process is because there are no known disinfection byproducts,” Anderson said. “It’s a physical process. People should not notice any taste. They should not notice any odor. It subjects it to a light. It’s a quick process.”

The facility’s ozone disinfection system, which kills viruses and giardia parasites, was also updated during the 17-month, $12 million project. The district received a $300,000 grant from Efficiency Maine to complete the project, and expects to save $150,000 on annual electric costs as a result of the upgrades. The program was primarily funded through the state Department of Health and Human Services’ Drinking Water State Revolving Fund.

According to the Centers for Disease Control, cryptosporidium can lead to stomach pain, dehydration, nausea, vomiting, fever and weight loss. It generally affects the small intestine, and can cause people with weak immune systems to succumb to chronic or fatal illnesses. Symptoms tend to set in two to 10 days after infection.

Michelle Clements, the water district’s spokeswoman, said that the improvements provide an additional safeguard to protect the quality of Greater Portland’s water supply.

“The project has added an additional barrier to potential contamination for our customers,” she said. “It’s just another way we provide safe, clean drinking water to our customers.”

Source: Lakes Region Weekly.

Water rates aimed at keeping precious commodity

by Gordon D. Fielder, Jr.

 

Editor’s Note: This piece explains a sensible approach to water pricing  that should be the practice of all water utilities: to charge more for increased water use rather than giving a discount to those who over-consume.  The article explains the rationale and the practice well. — Hardly Waite.

 

SALINA, Kan. (AP) — Salina’s water rates designed to help decrease consumption of a precious commodity

City water customers who are unsure if Salina is serious about conservation need only to become profligate with the garden hose this summer to clear up any doubts.

Salina abandoned its declining rate structure, which rewarded high use with lower cost, in favor of charging more for excess consumption.

“It used to be, the more you used the less it cost you,” said Martha Tasker, director of utilities. “In 2008 we changed that. Now we have a water conservation rate. Many would give it a much fouler name.”

The level of usage above which the conservation rate kicks in depends on a household’s base consumption.

Here’s how it works:

The city records a household’s winter quarter consumption rate — the amount of water used in January through March. That amount might be anywhere from 5,000 gallons a month to 10,000 gallons, depending on the size of household and personal water use.

The customer then is allowed to use 120 percent more than that each month before breaching the conservation threshold. This applies only to users who consume at least 6,000 gallons a month. The city spots all customers 6,000 gallons, so those who may use, say, 1,000 gallons, won’t reach the excess fee limit until they go over 6,000 gallons, not 1,200 gallons.

However, a household that averages 10,000 gallons a month during the three-month winter quarter would be able to use 12,000 gallons a month without paying the higher rate.

“Any water you use over that you pay an excess use rate for,” Tasker said.

For that first 12,000 gallons, the city charges $4.20 per 1,000 gallons. That comes to $50.40 a month, plus meter fees and taxes. Each 1,000 gallons over that, however, soaks the user for $8.40. So if the user instead consumes 13,000 gallons, that extra 1,000 gallons adds $8.40 to the bill, or $58.80.

The change attempts to encourage customers to be water misers.

“It doesn’t make sense if the more you use the less it costs. You’re not going to be very careful with how much you use,” she said.

The city draws its water from groundwater and from the Smoky Hill River. Tasker said river water costs less to treat, once it silts out, because it’s naturally soft. The water from the 15 wells is hard and must undergo treatment by chemicals, the cost of which keeps rising.

In winter, the city goes through about 5 million gallons a day, a rate that easily doubles in summer.

The conservation rate is intended to reduce the reliance on the more costly well water.

Water customers in Hutchinson and Manhattan pay less than Salina, in part because they still have a declining rate structure.

A 12,000-gallon monthly use in Hutchinson would cost $35.20 and in Manhattan, $37.29.

But an extra 1,000 gallons a month would bring the bill to $38.05 in Hutchinson and $46.17 in Manhattan.

Tasker said most Salinans shouldn’t expect conservation charges.

“Eighty to 85 percent never see excess use rates,” Tasker said.

In fact, many hover around the 6,000-gallon-a-month level.

“That’s 200 gallons a day,” she said.

To help customers with their water savings, the city has installed wireless metering that can track water usage by the hour. Before, water department employees had to eyeball each meter all over town.

“Nobody reads meters anymore,” Tasker said.

Small antennas in the meters bounce flow rates off a couple of water towers to city hall.

Leak detection software, once it’s fully up and running, can alert Tasker’s staff to unusual water use and who then can contact the homeowner.

For instance, the software might show water flowing 24 hours a day.

“That’s not normal,” Tasker said.

This will be especially useful for snowbirds who fly south for the winter.

“You could be gone and the water’s running into your basement and nobody would know (for a month),” she said.

“It’s about being accurate so people are paying for the actual water they are using,” she said.

Source: MySA.

Pure Water Gazette Fair Use Statement

 

How climate change will affect where you live

by Michael Slezak

The latest report from the Intergovernmental Panel on Climate Change spells out how climate change will affect each part of the world, and what can be done about it. For many regions the IPCC only makes vague predictions, and in some cases the impacts are deeply uncertain.

Here is our rough guide to the main impacts this century, and some tips for coping with them. It is partly based on draft versions of the report’s many chapters, the final text of which will be released within the next two days.

Europe: The south will fry

The Mediterranean looks to be the most threatened part of Europe, because the IPCC expects “multiple stresses and systemic failures due to climate change”.

Energy demand will drop in the rest of Europe, but the increased need for cooling around the Mediterranean will drive up energy costs. Tourism, a key industry, will take a hit from 2050, when holidaymakers are expected to choose northern destinations. Forest fires and heatwaves will increase, crops and vineyards will become less productive, fishery production will decrease and rising seas pose a growing threat.

To adapt, people will need to use energy-efficient cooling technologies to reduce energy demands; insure their assets; plant more diverse crops; and build early warning systems and hard walls to defend against floods.

North America: Shifting water

Rain and storms will move northwards, flooding areas north of New York and leaving southern areas short of water. Mexicans will have to do everything they can to preserve water and escape the heat.

Adapting to water deficits is not too hard: the key is increased efficiency. But extra flooding is more problematic, with total costs expected to increase tenfold this century.

The US has the capacity to adapt, but is struggling with misinformation and a lack of political will. Nevertheless, New York is on the right path, raising infrastructure like boilers out of the way of expected floods and trying to capture flood water before it reaches sewers.

Asia: Too much water, too little water

Sea-level rise is the biggest problem facing Asia. Globally, the majority of the people directly affected will be in southern and eastern Asia.

But that is not the only problem. Water scarcity will affect most of Asia, and higher temperatures will lower rice yields in some areas by shortening the growing season. Food production in Russia is under particular threat, and the IPCC estimates that up to 139 million people could face food shortages at least once a decade by 2070.

Countries will need to manage water better: water-saving technologies in irrigation may help. Growing crops that cope with high temperatures can boost yields up to 15 per cent, offsetting much of the almost 20 per cent decline expected by 2100.

Australasia: Extreme unknowns

There is a lot of uncertainty about impacts in Australasia, but some things are clear.

More extreme rainfall and rising sea levels will increase the frequency of devastating floods like those that hit Queensland in 2011. People in some areas will have to move away.

Extreme heat will increase and threaten lives, particularly those of the sick and elderly, and also cause more wildfires.

The Great Barrier Reef will continue to degrade, with warmer and more acidic water bleaching more coral, and greater stress coming from factors like agricultural run-off.

Coping with all this requires early warning systems and response plans. But there is huge uncertainty about how rainfall patterns will change. It may be best to plan for the worst.

Africa: Struggling to cope

The big issue for Africa is food security. Crops and livestock will be affected by flooding, drought and shifts in the timing of rainfall and temperature, but where and how these impacts will be felt is uncertain. There will also be more soil erosion from storms, plus pest and disease outbreaks due to warmer temperatures.

Africa has little capacity to adapt. One of the most pressing problems is simply spreading the word about climate change so people can make informed decisions.

Central and South America: Changing norms

Northern Brazil may lose 22 per cent of its annual rainfall by 2100, while the region around Chile could get a 25 per cent increase.

The drying regions will face food shortages. In northern Brazil, that will affect some of the poorest people. Shrinking glaciers in the Andes also threaten water supplies for some people, and will increase tensions.

Climate change will also bring new diseases to many areas, including water-borne diseases like cholera.

The whole region is relatively poor so will struggle to adapt. The first step is to adapt to the current climate. That includes easing poverty and creating early warning systems for disease outbreaks and bad weather.

Small islands: Sinking and eroding

Unsurprisingly, sea-level rise is one of the biggest threats for small islands, including those in the tropics, the Mediterranean, off Africa, and in the Indian and Pacific oceans. Rising waters will swamp some areas, erode coasts and contaminate sources of fresh water.

Building sea walls can have mixed results. In Barbados, building them protected human assets but led to more erosion elsewhere on the coast. It is sometimes better to use “soft” measures like increasing coastal vegetation to reduce erosion.

If islands are near coral reefs, the inhabitants often rely on the reef ecosystems for their livelihood. Reefs are now threatened by warm seas andacidification. But reducing other pressures, like water pollution and destructive fishing, could help.

Article Source:  New Scientist.

Pure Water Gazette Fair Use Statement

Guatemala’s treasured Lake Atitlán is dying

by Anna-Claire Bevan

GUATEMALA CITY – Once described by Aldous Huxley as the Lake Como of Guatemala, Lake Atitlán is a justified staple on the Central American tourist trail. However, over the past few years, agrochemicals, raw sewage, litter and shore development have taken their toll, turning the fresh blue water a murky shade of brown, turning tourists away.

This week a joint initiative by the Italian and Guatemalan governments called “Yo soy Atitlán” aims to raise the profile of Lake Atitlán’s problems and work with environmental organizations, experts and the surrounding communities to combat the contamination that threatens to destroy one of the world’s most picturesque places.

What was considered to be a local problem has drawn international concern as a team of Italian experts arrived in Guatemala earlier this week, keen to share their knowledge of how their own country rescued its lakes in the 1980s.

The Italian Embassy in Guatemala said that in “Italy, too, we have lived through contamination.”

According to a study by Del Valle University in Guatemala, over the past 45 years the pollution of Lake Atitlán, located 120 kilometers west of the capital, has contributed to a reduction in the transparency of the water, from 11 meters to 5.5 meters, and a decrease in the concentration of oxygen in the water from 7mg/liter to 0.3.

According to Margaret Dix, a biology professor at Del Valle University, pollution of the lake has led to a reduction in tourism, jobs, fish and food, and an increase in poverty and illnesses for the surrounding communities, for whom the lake represents a primary source of water.

“Every year one million cubic meters of untreated raw sewage enters the lake; 109,500 metric tons of litter – 3 pounds of solid waste per person, per day – and 110,000 metric tons of soil is lost due to erosion,” Dix said.

“To improve the ecological conditions of the lake, territorial planning is needed with an integrated management of solid and liquid waste to prevent the entry of raw sewage and to reduce the accumulation of phosphorous and nitrogen.

“Experiences in other parts of the world show that generally for lakes similar to Atitlán, traditional treatment plants are inadequate and have a prohibitively high operational cost. The solution is to export raw sewage to another basin where it can be treated to eliminate pathogens and the water can be used in agriculture. Many experts consider this to be the best option,” Dix said.

Various activities have been organized as part of the two-week campaign launch, such as an Italian rock concert in Guatemala City, which was opened by a Mayan cultural group and attended by approximately 1,000 people. Proceeds were donated to the Yo soy Atitlán program.

A forum for experts – from environmental ministers to conservationists – also was held to discuss possible solutions to eliminate the contamination, and a project called “Lancha Azul” will kick off next week to encourage dialogue among the surrounding lake communities and to teach them about solid-waste management.

Yo soy Atitlán hopes to encourage as many people as possible from the government and nongovernmental organizations, as well as environmental experts, communities around the lake and academic institutions to get involved and debate the challenges and goals for Lake Atitlán over the coming years.

The Guatemalan government already has agreed to allocate more funds to increase garbage collections in the area, purify water and improve waste management systems.

Said Dix: “The future is in our hands. There’s still time to stop the degradation process of Lake Atitlán.”

Source: Tico Times.

Pure Water Gazette Fair Use Statement

A Few Things You Should Know about Water Wells

by Pure Water Annie

If you get your water from a private water well, like it or not, you’re a water plant superintendent.

Most well pumps are of two types: jet pumps, which are used only on relatively shallow wells, and submersible pumps.

Since submersible pumps are most common, that’s what I’m going to concentrate on

A typical submersible pump is a long cylindrical shape that fits inside the well casing. The bottom half is made up of a sealed pump motor that is connected to the above-ground power source and controlled by electrical wires.

In modern installations, the well casing outside the home is connected to the plumbing system by a pipe that runs beneath the ground to the basement (if there is one).. This horizontal pipe joins the well pipe at a connector called apitless adapter. The function of the adapter is to permit access to the pump and well piping through the top of the well casing, while routing water from the pump into the plumbing system.

While submersible pumps are more efficient than jet pumps in delivering more water for the same size motor, pump or motor problems will necessitate pulling the unit from the well casing–a job that’s best left to a pro. However, submersibles are known for their reliability and often perform their role 20 to 25 years without servicing. Submersible pumps may also be used in shallow wells. However, silt, sand, algae and other contaminants can shorten the pump’s life.

No matter what kind of system you have, the components on the output side of all pumps are similar.

Pumps are not intended to run continuously, and they don’t start each time you open a tap or flush the toilet. In order to provide consistent water pressure at the fixtures, the pump first moves water to a storage tank. Inside a modern tank is an air bladder that becomes compressed as the water is pumped in. The air pressure in the tank is what moves the water through the household plumbing system.

When the pressure reaches a preset level, which can be anywhere from 40 to 60 psi, a switch stops the pump. As water is used in the home, pressure begins to decrease until, after a drop of about 20 psi, the switch turns on the pump and the cycle is repeated. You’ll find the pressure gauge mounted on the tank with wires leading to the switch that controls the pump.

The picture above is from a Popular Mechanics article on well pumps. You can see jet pump illustrations there as well.

Typical air pressure settings for well tanks are 30 to 50 or 40 to 60. What this means is that with a 30/50 setting, for example, the pump comes on to refill the tank when tank pressure drops to 30 psi, and the pump shuts off when the pressure in the tank reaches 50 psi.

In most cases, tank pressure is adjustable and can be controlled with the Pressure Switch in the picture.

If you’re installing a water treatment device such as a softener or backwashing filter, it always goes downstream of the well’s pressure tank. There are a few exceptions. Chemical feed pumps and venturi air injection devices, for example, are installed between the well and the pressure tank.

 

Although many wells produce excellent water which requires little if any treatment, most well water requires some modification. Some of the most common problems are iron, manganese, hardness, hydrogen sulfide (rotten egg odor), excessive sediment, low pH, and bacteria. Among the most commonly used treatment devices are ultraviolet lamps (bacteria and cysts), sediment filters (sand and other sediment), granular carbon (taste/odor/color improvement, hydrogen sulfide reduction), backwashing media filters (iron, manganese, excessive sediment), aeration, chlorination, hydrogen peroxide, ozonation (pretreatment for iron and sulfide reducing filters), and chemical feed pumps (to control bacteria, raise pH, pretreat for iron removal). These, of course, are only a few of the many devices that can be used to treat well water problems.

What You Need to Know About Your Well

First, every well owner should have a reasonably comprehensive water test to determine the nature of the water. Many problems, like hardness, odor, and iron, are apparent, but a high quality test is needed to confirm and quantify such issues. Two parts per million iron can be treated quite differently from 12 parts per million. And the most urgent problems of all, like bacteria or high levels of arsenic or pesticides, are not apparent but must be discovered by testing.

If you’re going to purchase treatment equipment, especially a backwashing filter or a water softener, for your well, you also need to know how many gallons per minute your well pump is capable of producing. Backwash runs require a sustained flow of several gallons per minute. For example, a typical residential-sized iron filter may require a ten minute backwash and a ten minute rinse at the rate of five to seven gallons per minute. If your well pump will produce only 4, the filter with become overloaded with iron and fail. You can’t rely on the GPM rating of the well pump. You need to know the actual gallons per minute that the well will put out.

Here’s a simple method to find out your well’s output capacity.

Determining the GPM Output of a Water Well

Turn off all taps and water-using appliances in the home.

Find an outdoor spigot in a place that will allow you to observe your well pump’s activity. You’ll need to know when the pump turns on and off. The output capacity of the spigot itself doesn’t matter.

Run water from the spigot until the pump comes on, then close the faucet and let the pump fill the tank and shut off.

With the tank now full, find a container, or multiple containers (e. g. 5-gallon buckets) that will allow you to measure the content of your well tank. Turn on the spigot and catch the water until the pump comes on.

When the pump comes on, immediately close the faucet and time the seconds it takes for the pump to turn off. (This means that the tank is full.)

Now you know the amount of water the tank holds and the number of seconds it takes to refill it. You can determine the well pump’s gallon-per-minute capacity by using the following formula:

Gallons collected, divided by seconds it took to refill the tank, multiplied by 60. (You multiply by sixty to convent the seconds to minutes, because your answer needs to be in gallons per minute.)

For example, if you collected 15 gallons and it took 75 seconds for your pump to refill the tank, your equation would look like this: (15/75)X60 = 12 GPM.

If you collected 18 gallons and it took 55 seconds for your pump to shut off, the formula would be: (18/55) X 60 = 19.6 GPM.

Pure Water Annie’s article was originally published in the Pure Water Occasional’s December 2011 issue.

This Edible Blob Is A Water Bottle Without The Plastic

Inspired by techniques from molecular gastronomy, the Ooho is a magical way to have your bottled water and eat it, too. Just maybe bring a towel.

One way to stop the ever-growing pile of plastic water bottles in landfills? Make a bottle people can eat.

Inspired by techniques from molecular gastronomy, three London-based industrial design students created Ooho, a blob-like water container that they say is easy and cheap to make, strong, hygienic, biodegradable, and edible.

The container holds water in a double membrane using “spherification,” the technique of shaping liquids into spheres first pioneered in labs in 1946 and more recently popularized by chefs at elBulli in Spain. It works a little like an egg yolk, which also holds its shape using a thin membrane.

“We’re applying an evolved version of spherification to one of the most basic and essential elements of life–water,” says Rodrigo García González, who designed the Ooho with fellow design students Pierre Paslier and Guillaume Couche.

A compound made from brown algae and calcium chloride creates a gel around the water. “The double membrane protects the inside hygienically, and makes it possible to put labels between the two layers without any adhesive,” García explains.

While the package is being formed, the water is frozen as ice, making it possible to create a bigger sphere and keeping the ingredients in the membrane and out of the water.

Why not just drink from the tap? The designers wanted to address the fact that most people are drinking water in disposable bottles. “The reality is that more and more, when we drink water we throw away a plastic bottle,” García says. “Eighty percent of them are not recycled. This consumerism reflects the society in which we live.”

By rethinking the bottle, the designers say it’s also possible to reduce cost; for manufacturers, most of the cost of producing water comes from the bottle itself. The Ooho can be made for just two cents.

 

Like other edible packages, the Ooho seems to have a few challenges–like how the package stays clean before you drink from it and potentially eat it. But others have made it to market: the edible Wikipearl will be available at selected Whole Foods this month. The other problem, as you can see from the videos, is that you’re going to get some water on your face, clothes, and the table. That’s the sacrifice you make for getting rid of water bottles from your life.

Even if bottled water companies don’t switch to Ooho, the designers say they hope people will try making the packages at home. “Anyone can make them in their kitchen, modifying and innovating the recipe,” says García. “It’s not DIY but CIY–cook it yourself.”

The design was a winner of the second annual Lexus Design Award and will be on display during Milan Design Week.

 

Source: FastCompany

Pure Water Gazette Fair Use Statement

Aeration Overview

 

Aeration is an effective chemical-free method of preparing water containing iron and hydrogen sulfide for filtration. Exposure to air “oxidizes” the contaminant to a filterable form (ferric iron or elemental sulfur), then an appropriate filter removes the contaminant from the water.

Closed tank aeration for residential treatment is available in several formats. The least expensive, though not necessarily the simplest, uses a small venturi that is installed in the water line itself in front of the well’s pressure tank. As water fills the tank, air is literally sucked into the water stream via the venturi. A small treatment tank where “oxidation” occurs follows the pressure tank. The water then goes to a free-standing filter for final filtration.

A much more aggressive treatment uses a small air compressor, or “air pump,” that injects air into a treatment tank. When water enters the tank it falls through a pocket of compressed air where rapid oxidation occurs. The water then passes on to a filter tank for final removal of the contaminant.

A Small Compressor Powers the “AerMax” System

 

Single tank units are the simplest form of aeration treatment. Single tank systems perform the aeration and filtration in a single tank. Water enters the tank, falls through a pocket of compressed air, then is filtered by the media contained in the lower 2/3 of the tank. Single tank units need no pump; they bring in air during the nightly regeneration performed automatically by the control unit.

More Information

 

Simple Venturi Systems and Parts

 

AerMax: Top Quality Compressor-Powered Aeration

 

Single Tank Aeration Units: Filtration and Aeration in One Convenient Vessel

 

Aeration Parts from Pure Water Products

 

How Aeration Works

PWO0721